MMP Learning Seminar
Week 100
Content:
Corregularly of $F_{\text {ano varictices }}$

Regularity of a \log parr: (X, Δ) nomoll e ap.

$$
\operatorname{reg}(X, \Delta)=\max \left\{k \left\lvert\, \begin{array}{c}
\text { There exists a } \log \text { resolution }\left(T, \Delta_{T}\right) \xrightarrow{\varphi}(X, \Delta) \\
\text { and prime divisors } S_{1}, \ldots, S_{k} \subseteq \Delta_{T}^{2} \text { such that } \\
S_{1} \cap \ldots \cap S_{k} \neq \varnothing
\end{array}\right.\right\}
$$

-1 .

$$
\varphi^{*}\left(K_{x}+\Delta\right)=K_{r}+\Delta_{r} .
$$

Example: $\quad\left(\mathbb{P}^{2}, \frac{1}{2} L_{1}+\cdots+\frac{1}{2} L_{4}\right)$

$$
\operatorname{reg}\left(\mathbb{D}^{2}, \frac{1}{2}\left(\sum_{i=1}^{\dagger} L_{i}\right)\right)=0
$$

$$
\left(\mathbb{D}^{2}, \frac{1}{2} L_{1}+\frac{1}{2} L_{2}+\frac{1}{2} C_{1}+\frac{1}{2} C_{2}\right) \quad \text { reg }=1 .
$$

Remark: For a n-dim pair, the reg is in $\{-1, \ldots, n-1\}$.
all of them passing through

$$
(\mathbb{P}^{2}, \frac{1}{n}(\underbrace{\left.L_{1}+\cdots+L_{n}\right)}+\frac{1}{n}(\underbrace{\left(C_{1}+\cdots+C_{n}\right.}))^{\prime}
$$

are transversal.
\qquad

All of them have the same tangent direction which is different from tangent dir of line.

Absolute regularity: X normzl projechive.

$$
\left.\begin{array}{cc}
\hat{\operatorname{reg}}(X)=\max \{\operatorname{reg}(X, \Delta) \mid(X, \Delta) & \text { is } \log _{\| \prime} C Y
\end{array}\right\}
$$

Absolute coregolarity:

$$
\hat{\operatorname{coreg}}(X)=\operatorname{dim} X-\hat{\operatorname{reg}} X-1
$$

Example: $X \cong \mathbb{D}^{n}$, then $\operatorname{coreg}\left(\mathbb{D}^{n}\right)=0$. $\operatorname{dim} X$
For a Fano varrety $-K_{x}$ is ample so coreg $(X) \in\{0, \ldots . n\}$ vavichies belog to this class.

Examples:

- del Pezzo surfaces: Any del Mezzo surface of degree $\geqslant 2$ has oreg $=0$.

- del Pezzo surfaces of degree $1:$

What about higher dimensions:
There are 105 famines of $F_{\text {arno }}$ termini l 3-fold.
Logmov: At least 100 of these families have general element of corey $=0$.

Problem: Classify all Fano Gorenstcin surfaces of coring $=0$.

- Classification of $F_{\text {no }}$ Govenstein surfaces of $\rho=1$.

Complements:

i) (X, Δ) is $\log C Y \&$
ii) $N\left(k_{x}+\Delta\right) \sim 0$.
$N \Delta \in|-N K x|$
Controlled multiple of the anti-canonial
Example: X is a toric variety, then X admits a 1 -comp of corey $=0$.

Theorem (Birkav, 2016): Let X be a n-dimensions) Fans type var. Then, X admits a $N(n)$-complement.
Q: How fast does $N(n)$ grows?

$$
\begin{aligned}
& N(1)=1 . \\
& N(2)=? ?
\end{aligned}
$$ vaviehes.

Theorem (Totars,2022): There exists a Faro 4-fold which admits no m-complement for $m \leq 1.966 .233$.
$N(4) \geqslant 1.966 .233$. Remark: $N(n)$ prows at least doubly exponentivly with n.
X Fans of dimension $n, \hat{\operatorname{coreg}}(X) \in\{0, \ldots, n\}$
whit happens here? $N(n)$ grown $f_{2 l}$

Theorem 1 (Figueroa - Filipa3si - M- Peng, 2022):
A Fans of corey $=0$ admits a 1 -comp or 2-comp of cory $=0$.
Theorem O (Filip2z3i - Mari - M, 2023):
Let (X, Δ) be $2 \log C Y$ pair of cory $=0$. Assume Δ has standard coefficients. Then $2(K x+\Delta) \sim 0$.

The 0 is one of the tools used in the proof of $T h m 1$

Examples: D-type singularities:

For D_{n} singularities, we hive $m_{1}=\ldots=m_{n}=2$.
Q: Can we have a 1 -complement.

$$
a_{E_{1}}(x)=a_{E_{2}}(x) \leqslant \frac{1}{2} \quad a_{F}(x)<1 .
$$

(X, Δ) 1-complement.
Then $a_{E_{1}}(X, \Delta)=a_{E_{2}}(X, \Delta)=0$.

$$
a_{F}(x, \Delta)=0
$$

No non-trivial (strict Ic) 1-comp for D-type sing.
However. D-type sing admit reduced 2 -complement.

Fano surface with $\rho=1$ \& mo 1 -comp of cory $=0$.

$$
\begin{aligned}
& m l d_{x_{0}}(X, \Delta)=0 \\
& m l d_{x_{0}}(X)<1 \\
& m l d_{x_{1}}(X)=1
\end{aligned}
$$

(X, C) is $\log C Y \& \quad 2\left(K_{x}+C\right)$ vo.

Sketch of the proof of The 1:
X Fano variety of $c_{0} \hat{r} g=0, \quad n=\operatorname{dim} X$
$(X, \Gamma)_{\text {a }}$ complement of $\operatorname{coreg}(X, \Gamma)=0$.
dIt model. Y Fans type $\Longrightarrow Y$ is a MDS
$\left(Y, \Gamma_{T}\right), E_{1}, \ldots, E_{n} \subseteq\left\lfloor I_{T}\right\rfloor$ with $E_{1} \cap \ldots \cap E_{n} \neq \phi$.

$\operatorname{Run} 2\left(-2\left(K_{r}+E_{1} \ldots+E_{n}\right)\right)-M M P \quad Y \rightarrow Z$ $-2\left(K_{z}+E_{z, 1}+\ldots+E_{z, n}\right)$ is semiample.

Using the negativity Lemma it suffices to produce a Ic element in

$$
\left|-2\left(K z+E_{z, 1}+\ldots+E_{z, n}\right)\right|
$$

$$
Y \ldots Z \quad\left|-2\left(K_{z}+E_{z, 1}+\cdots+E_{z, n}\right)\right| .
$$

- $\operatorname{dim} W=0 \quad K_{z}+\sum_{i=1}^{n} E_{2 i} \equiv 0$ so by FMM22.

$$
2\left(K_{z}+\sum_{i=1}^{n} E_{2, i}\right) \sim 0 .
$$

- $\operatorname{dim} W=\operatorname{dim} X . \quad-\left(K_{z}+\sum_{i=1}^{n}, E_{z, 3}\right) \quad$ big \& semiample We can find a component, say E_{1} s.l.

$$
\begin{aligned}
& H^{0}\left(-2\left(K_{z}+\sum_{i=1}^{n}, E_{z, i}\right)\right) \longrightarrow\left.H^{0}\left(-2\left(K_{E_{1}}+\sum_{i=2}^{n} E_{i}\right)_{E_{L}}\right)\right) \\
& \downarrow \\
& \text { FT of coreg =0. } \\
& \begin{array}{c}
\text { Howeree the worf } \\
\text { standzy bearme }
\end{array}
\end{aligned}
$$

- $\operatorname{dim} W \in\{1, \ldots \operatorname{dim} x-1\}$, there is a component, E_{1}. such th2t E_{1} is verti(2) is base
Trica: perturb E_{2}, \ldots, E_{n} so th2t $-\left(k_{2}+E_{1}+(1-\delta) \sum_{i=2}^{n}, E_{i}\right)$ $\tau_{\text {is big \& nd. }}$

Only case left $(\operatorname{dim} 1)$:

$$
\operatorname{coreg}=0 .
$$

1-complement.
2-complement.

